Hemostasis Test Validation, Performance and Reference Intervals

Richard A. Marlar, Ph.D.
Pathology and Laboratory Medicine
Oklahoma City VA Medical Center
University of Oklahoma Health Sciences Center
DISCLOSURE
Richard A. Marlar, PhD

- **Relevant Financial Relationships**
 None

- **Off Label Usage**
 None
Chemistry and Hematology

Lab Values

- Results expressed as amounts or participles
 - Albumin: 3-4 g/dL
 - Sodium: 135-145 mEq/L
 - RBC: 4.3-5.9 x10^6/ mm³

International Standards

- Seamless values between methods
- Excellent reproducibility
Coagulation
Lab Values

- Results expressed as arbitrary values
 - PTT: 32 sec
 - Factor VIII: 34%
 - FVIII Inhibitor: 12 Bethesda units

- Few International Standards
- Values vary between methods
 - Heparin Therapeutic range:
 - Reagent A: 65-85 sec
 - Reagent B: 85-120 sec

- Moderate reproducibility
Coagulation Testing Accuracy
Performance and Reference Intervals

Outline

- Validation of New Assay
 - Components required for validation
 - Protocol for validation
- Assay Method Performance
 - Internal QC performance
 - External Proficiency Testing
- Reference Intervals
 - Basic principles
 - Common methods
Bottom-line for Hemostasis Testing

- All aspects of hemostasis testing leads to Post Medical Decision Making
- Testing parameters should be based on “Evidence Based Medicine”, however Tradition is more common
- Must compromise between statistical number and minimal number for evaluation of a test
Coagulation Laboratory
Assays and Procedures

- Evaluation of a pathophysiological condition
 - Assist in the diagnosis of the cause of bleeding or thrombosis
 - Monitoring Therapy

- To have clinical value as an assay:
 - Total error must be low to reflect the biological condition
New Test Implementation and Validation

Range of tests:
- FDA approved
- Analyte Specific Reagent (ASR)
- Research Use Only (RUO)
- “Home Brew”

All new tests must be systematically validated and regulated
- Level of evaluation varies
- All new tests must be validated
- All tests must meet a defined level of reliability
- All tests must continue to be validated on a regular basis
Coagulation Laboratory Analysis

Assay Error

For an analysis to have value:

- Total error must be low to differentiate between normal and abnormal

- General types of error:
 - Individual biological variability
 - Pre-Analytical variability
 - Analytical variability in test performance
 - Statistical error
 - Interfering substances
New Test Implementation and Validation

Assay Validation Protocol

- Purpose of validating is to insure the generation of high quality data for accurate diagnosis of disease
- To ensure a proper validation, a pre-approved protocol must be used
- Protocol must include:
 - All administrative aspects of test
 - Statistical validation of assay
 - All test parameters evaluated
Coagulation Test Implementation and Validation Protocol

Responsibilities

- **Ultimate responsibility:**
 - Laboratory Director
 - Departmental Director

- **Specific responsibilities:**
 - Department Supervisor
 - Laboratory Information Manager (LIM)
 - Quality Assurance Technologist
Coagulation Test Implementation and Validation Protocol

Supervisor’s Responsibilities

- Existence of patents
- Written procedure
 - Proper format
 - Not final draft
 - Usually provided by manufacturer
Coagulation Test Implementation and Validation Protocol

Supervisor’s Responsibilities

- Statistical Validation study
 - Varies depending on type of test
- Included Parameters
 - Accuracy
 - Precision
 - Analytical Sensitivity and Specificity
 - Interferences
 - Reference Range and AMR
 - Limits of Detection
 - Correlation
Coagulation Test Implementation and Validation Protocol

Supervisor’s Responsibilities

- Quality Control procedure
 - Control materials
 - Frequency
 - Criteria for acceptability
- MSDS Information
- Complete test information for LIS
- Necessary information to clinicians
- Cost analysis and test charge
Coagulation Test Implementation and Validation Protocol

Supervisor’s Responsibilities

Training Plan:

- Training methods and materials
- List of staff requiring training
- Documentation of completion
- Documentation of competency assessment
- New employee training checklist
Coagulation Test Implementation and Validation Protocol

LIM’s Responsibilities

- Add test information to LIS files
- Verify report format
 - Lab Information System
 - Hospital Information System
- Establish CPT coding and other coding necessary for cost recovery
Coagulation Test Implementation and Validation Protocol

QA Technologist’s Responsibilities

- Add procedure to Document Inventory Log
 - Assign document number
- Add signed procedure to SOP manual
- Add to Specimen Collection manual
- Add to Activity Menu
 - For accrediting organization
- Implement Proficiency Testing procedure
Validation Parameters

Coagulation's Dilemma

- Validation varies on type of test
 - FDA approved
 - Research Use Only
 - “Home Brew”
- Accuracy
- Precision
- Interferences
- Reference Range
- AMR
- Limits of Detection
- Correlation
Performance of Hemostasis Tests

- Necessary to ensure accurate results over time
- Must have on-going evaluation of the method
- Must be able to compare results
 - From validation until current run
- Internal QC:
 - On-going periodic analysis
 - Required by regulatory agencies
 - Set of rules to determine acceptance or failure
- External Quality Assessment
 - Periodic comparison with other labs
 - Best measure of accuracy
 - Set of rules to determine acceptance or failure
Reference Interval in Coagulation and Hemostasis

- INTERPRETATION OF COAGULATION DATA IS A COMPARATIVE DECISION-MAKING PROCESS!
- Compare patient result to reference interval
- Reference interval set up for:
 - “Normal” or healthy
 - Physiologic conditions
 - Pathologic conditions
- Therapeutic reference interval is determined in similar manner
Establishing Reference Intervals for Coagulation Assays

<table>
<thead>
<tr>
<th>Ref Interval</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Analyte</td>
<td>Determination is difficult</td>
</tr>
<tr>
<td></td>
<td>Lack data on physiology, pathology and medical aspects</td>
</tr>
<tr>
<td>New Method</td>
<td>Determination somewhat easier</td>
</tr>
<tr>
<td></td>
<td>Physiology and medical aspects known</td>
</tr>
<tr>
<td>Transference</td>
<td>Easier to determine</td>
</tr>
<tr>
<td></td>
<td>Must use caution in establishing</td>
</tr>
</tbody>
</table>
Use of “Transference” for Establishing Reference Interval

- Applying previously established ranges (by lab, others or literature) to new assay methods.
- Methods to accept transference:
 - Use of inspection and subjectivity of method procedure to determine similar range
 - Validation of range with small number of reference samples
- Methods not well established for coagulation assays
Validation of Coagulation Tests

Summary

- Validation of a coagulation test can be difficult
- Set up protocol for validation:
 - Protocol written
 - Approved before starting
- Protocol to Include:
 - Administrative issues
 - Validation with statistical analysis
Performance Criteria of Coagulation Tests

Summary

- Continued evaluation of assay
- Internal Quality Control
 - Periodic testing of same sample
 - Maintain precision and accuracy over time
 - Established rules for acceptability
- External Quality Control
 - Measure of accuracy and precision
Reference Intervals Determinations for Coagulation Tests

Summary

- Reference interval is critical for clinical decision making
- Different types of reference intervals:
 - Normal
 - Physiologic
 - Pathologic
 - Therapeutic
- Reference interval determinations:
 - New analyte
 - New method
 - Transference
Reference Literature for Validation, Performance and Ref Intervals

- **Guidelines for Validation of Assays:**

- **Guidelines for Reference Intervals:**
 - CLSI Document on Reference Intervals in the Clinical Laboratory (C28-A2)

- **Guidelines for Specific Coagulation Tests:**
 - CLSI Document on PT and APTT (H47-A2)
 - Numerous CLSI Documents on Coagulation Testing (H series)
Questions?
Testing Validation Parameters

Coagulation's Compromise

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Optimum</th>
<th>Practical</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>100</td>
<td>10-20</td>
<td>±5%</td>
</tr>
<tr>
<td>Precision</td>
<td>10 within runs</td>
<td>5 within runs</td>
<td>%CV</td>
</tr>
<tr>
<td></td>
<td>10 between runs</td>
<td>5 between runs</td>
<td></td>
</tr>
<tr>
<td>Interferences</td>
<td>25 of each</td>
<td>~5 of each</td>
<td></td>
</tr>
<tr>
<td>Reference Range</td>
<td>100 normals</td>
<td>20-40 normals</td>
<td>Mean ±2 SD</td>
</tr>
<tr>
<td>AMR</td>
<td>50-100</td>
<td>20-40</td>
<td></td>
</tr>
<tr>
<td>Limits of Detection</td>
<td>25 undetectable</td>
<td>5-10 undetectable</td>
<td>+3 SD of zero</td>
</tr>
<tr>
<td>Correlation</td>
<td>200</td>
<td>20-25</td>
<td>R > 0.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Slope ~1.0</td>
</tr>
</tbody>
</table>